MathsGeeks

'Everything You Need to Know' A Level – Edexcel – C1

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$E(X) = \sum_{x} x P(X = x)$$

$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$

$$A = \pi r^{2}$$

$$y = \sqrt{2}$$

$$u \frac{dv}{dx} + v \frac{du}{dx}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

September 2013

MathsGeeks

Copyright © Elite Learning Limited

MathsGeeks

www.mathsgeeks.com

Simple Algebra:
$$x^{-1} = \frac{1}{x}$$
 $x^{\frac{1}{n}} = \sqrt[n]{x}$ $e. g$ $8^{\frac{4}{3}} = (\sqrt[3]{8})^{\frac{4}{3}} = 2^4$ $x^a(x^b) = x^{a+b}$

To simplify fractions in the form $\frac{a+\sqrt{b}}{c+\sqrt{d}}$ multiple by $\frac{c-\sqrt{d}}{c-\sqrt{d}}$ to remove the surd from the bottom e.g.

$$\frac{2-\sqrt{5}}{7+\sqrt{5}} \times \frac{7-\sqrt{5}}{7-\sqrt{5}} \text{ giving } \frac{14-2\sqrt{5}-7\sqrt{5}+5}{7-5} = \frac{19-9\sqrt{5}}{2}.$$

Differentiation: Use $\frac{dy}{dx} = nx^{n-1}$ e.g. if $y = x^{\frac{3}{2}}$ then $\frac{dy}{dx} = \frac{3}{2}x^{\frac{1}{2}}$.

Note $\frac{dy}{dx}$ can be written as f'(x) and $\frac{d^2y}{dx^2}$ means differentiate twice.

To solve more complicated differentiation make sure you expand out all the terms first and bring any terms in the denominator up to the numerator. e.g. $y = \frac{2}{x}(\frac{1}{x} + 3x^3)$ then expanding out $y = \frac{2}{x^2} + 3x^2$ therefore $y = 2x^{-2} + 3x^2$ and $\frac{dy}{dx} = 2 \cdot (-2)x^{-3} + 3 \cdot (2)x = -4x^{-3} + 6x$.

Integration: Use $\int y \, dx = \frac{1}{n+1} x^{n+1} + C$ e.g. if $y = x^{\frac{5}{2}}$ then $\int x^{\frac{5}{2}} dx = \frac{1}{7/2} x^{\frac{7}{2}} + C = \frac{2}{7} x^{\frac{7}{2}} + C$

WHEN YOU INTEGRATE ALWAYS INCLUDE A CONSTANT. Similarly expand out and bring any denominators up to the numerator before you integrate.

Arithmetic Sequence: Use formula books for equations, where a is the first term and d is the difference between two terms.

Any term = $u_n = a + (n-1)d$ and Sum to n terms = $S_n = \frac{n}{2}[2a + (n-1)d]$ and carefully substitute in a and d.

For questions like $\sum_{r=1}^4 a_r$ work out a_{1,a_2} , a_{3,a_4} separately and then add together.

Learn proof of $S_n = \frac{n}{2}[2a + (n-1)d]$. First write out S_n

(1) $S_n = a + (a+d) + (a+2d) + \cdots + (L-d) + L$ where L is the last term. Then write in reverse order.

(2)
$$S_n = L + (L - d) + (L - 2d) + \cdots + (a + d) + a$$
. Add together (1) and (2) you get

$$2S_n = (a + L) + (a + L) + (a + L) + \cdots \dots (a + L)$$
. Therefore

 $S_n = \frac{n}{2}(a+L)$ but L is the nth term of the series to L = a + (n-1)d and therefore

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

Page 1 of 2

Inequalities: For quadratics solve as if equal to zero and then plot the curve. E.g. $2x^2 - 5x - 12 < 0$ then (2x+3)(x-4) < 0 therefore the critical values are $x=-\frac{3}{2}$ or x=4. Plot is approximately as follows. This function is clearly < 0 between the critical values and so $-\frac{3}{2} < x < 4$.

2013_Sept_ALevel_Edexcel_EYNTK Copyright©2013 Elite Learning Ltd

MathsGeeks

www.mathsgeeks.com

Simultaneous Equations: Find one equation in terms of one unknown and sub this into the second one. e.g. Given y=x-2 and $2x^2-xy=8$ subst y into second equation and simplify i.e. $2x^2-x(x-2)=8$ so $2x^2-x^2+2x-8=0$ and $x^2+2x-8=0$ then (x-2)(x+4)=0 and x=2 or x=-4. Do not forget to then substitute back in for y i.e. When x=2, y=0 and when x=-4, y=-6.

Roots of Quadratic: If $ax^2 + bx + c = 0$.

- 1) $b^2 4ac > 0$ there are two distinct real roots
- 2) $b^2 4ac = 0$ there are two equal roots
- 3) $b^2 4ac < 0$ there are NO real roots

Graph Transformations

x-transformations:	y-transformations:
$f(x) \rightarrow f(x+3)$ translate the graph left by 3.	$f(x) \rightarrow f(x) + 2$ translate the graph up 2.
$f(x) \to f(x/3)$ scale the graph by a factor 3 in	$f(x) \rightarrow 2f(x)$ scale the graph by a factor 2 in
the x direction.	the y direction
$f(x) \rightarrow -f(x)$ reflect the graph in the x axis	$f(x) \rightarrow f(-x)$ reflect the graph in the y axis

Curves/Points/Tangents/Normals

Gradient of the tangent is $\frac{dy}{dx}$ and substitute into y=mx+c find c but substituting the known point on the line. If you are asked for normal then $\frac{dy}{dx}=-\frac{1}{m}$.

The length of a line between two points $d=\sqrt{((x_2-x_1)^2+(y_2-y_1)^2)}$. If you have two points the the gradient m can be found by $m=\frac{y_2-y_1}{x_2-x_1}$.

Don't forget that the area of a triangle = $\frac{1}{2}(base \times height)$.

Sketching Cubic Curves The general shape of cubic curves are shown below where the roots are where the curve crosses the x axis. Don't' forget to also work out where the curve crosses the y axis by putting in x = 0. If there is a double root the curve turns at this point.

Page 2 of 2 2013_Sept_ALevel_Edexcel_EYNTK Copyright©2013 Elite Learning Ltd